Manifolds and Group actions

Homework 4

Mandatory Exercise 1. (5 points)
Note that the set $M_{n}(\mathbb{R})$ of square n dimensional matrices can be identified with $\mathbb{R}^{n^{2}}$ and has a natural manifold structure. Consider the set of orthogonal matrices

$$
O(n):=\left\{A \in M_{n}(\mathbb{R}) \mid A A^{T}=\mathrm{id}\right\}
$$

a) Show that that the set of orthogonal matrices is a submanifold of $M_{n}(\mathbb{R})$.
b) What is the dimension of $O(n)$?
c) Describe the tangent space of $O(n)$ at the identity.

Mandatory Exercise 2. (5 points)
Discuss and prove/disprove whether the following maps are injective and if they are immersions/embeddings. Are the images submanifolds?
a) Let $c \in \mathbb{R}$ and $\gamma: \mathbb{R} \rightarrow S^{1} \times S^{1}$ be the map

$$
\gamma(t)=\left(e^{2 \pi i t}, e^{2 \pi i c t}\right)
$$

Hint: Be careful, your answer should depend on number theoretic properties of c.
b) Let $f: M \rightarrow N$ be any given smooth map. Consider the map graph ${ }_{f}: M \rightarrow M \times N$ defined by $\operatorname{graph}_{f}(x)=(x, f(x))$.
Mandatory Exercise 3. (5 points)
Show that the following definitions of a submanifold N in M are equivalent.
i) N is the image of an embedding of a k dimensional manifold.
ii) For all $p \in N$ there exists a chart (U, φ) such that $\varphi(U \cap N)=\varphi(U) \cap\left(\mathbb{R}^{k} \times\{0\}\right)$.

Mandatory Exercise 4. (5 points)
Let $i: N \rightarrow M$ an embedding. Show that
$(d i)_{p}\left(T_{p} N\right)=\left\{v \in T_{i(p)} M \mid v(f)=0 \quad\right.$ for all functions $\quad f: M \rightarrow \mathbb{R} \quad$ such that $\left.\quad f\right|_{i(N)} \quad$ is constant $\}$.
Suggested Exercise 1. Let X be a vector field on M. Show that the following are equivalent

1. X is smooth.
2. For every smooth function $f: M \rightarrow \mathbb{R}$ the function $X(f): M \rightarrow \mathbb{R}$ is smooth.

Suggested Exercise 2. (0 points)
Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & t \leq 0 \\
e^{-1 / t} & & t>0
\end{array}\right.
$$

is smooth.

Suggested Exercise 3. (5 points)
Discuss which values of the maps below are regular.
a) Let M and N be manifolds and consider the projection $\pi: M \times N$ defined by $\pi(x, y)=x$.
b) Let $c \in \mathbb{R}^{n}$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the map $f(x)=|x-c|^{2}$.
c) The determinant det : $M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ and trace $\operatorname{tr}: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ of (2×2)-matrices $M_{2}(\mathbb{R})$.

